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CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC
SUMS IN THE METRIC SPACE L

JATINDERDEEP KAUR 1 AND S.S. BHATIA 2∗

Abstract. We introduce here new modified cosine and sine sums as
a0

2
+

n∑

k=1

n∑

j=k

4(aj cos jx)

and
n∑

k=1

n∑

j=k

4(aj sin jx)

and study their integrability and L1-convergence. The L1-convergence of cosine
and sine series have been obtained as corollary. In this paper, we have been able
to remove the necessary and sufficient condition ak log k = o(1) as k →∞ for
the L1-convergence of cosine and sine series.

1. Introduction

Consider cosine and sine series

a0

2
+

∞∑

k=1

ak cos kx (1.1)

and
∞∑

k=1

ak sin kx (1.2)
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or together
∞∑

k=1

akφk(x) (1.3)

Where φk(x) is cos kx or sin kx respectively. Let the partial sum of (1.3) be
denoted by Sn(x) and t(x) = lim

n→∞
Sn(x). Further, let tr(x) = lim

n→∞
Sr

n(x) where

Sr
n(x) represents rth derivative of Sn(x).

Definition 1.1. A sequence {ak}is said to convex if 42ak ≥ 0, where 42ak =
4(4ak) and 4ak = ak−ak+1, and quasi-convex sequence if

∑
(k +1)42ak < ∞.

The concept of quasi-convex was generalized by Sidon [4] in the following man-
ner:

Definition 1.2. [4] A null sequence {ak} is said to belong to class S if there
exists a sequence {Ak} such that

Ak ↓ 0, k →∞, (1.4)
∞∑

k=0

Ak < ∞, (1.5)

and
|∆ak| ≤ Ak, ∀ k. (1.6)

A quasi-convex null sequence satisfies conditions of the class S because we can
choose

An =
∞∑

m=n

|42am|.

Concerning L1-convergence of (1.1) and (1.2), the following theorems are known:

Theorem 1.3. ([1], p. 204) If ak ↓ 0 and {ak} is convex or even quasi-convex,
then for the convergence of the series (1.1) in the metric space L1, it is necessary
and sufficient that ak log k = o(1), k →∞.

This theorem is due to Kolmogorov [2]. Teljakovskii [5] generalized Theorem
1.3 for the cosine series (1.1) with coefficients {ak} satisfying the conditions of
the class S in the following form:

Theorem 1.4. If the coefficient sequence {ak} of the cosine series (1.1) belongs
to the class S, then a necessary and sufficient condition for L1-convergence of
(1.1) is ak log k = o(1), k →∞.

Theorem 1.5. ([1], p. 201) If ak ↓ 0 and
∞∑

k=1

(ak

k

)
< ∞, then (1.3) is a Fourier

series.

In the present paper, we introduce new modified cosine and sine sums as

fn(x) =
a0

2
+

n∑

k=1

n∑

j=k

4(aj cos jx)
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and

gn(x) =
n∑

k=1

n∑

j=k

4(aj sin jx)

and study their integrability and L1-convergence under a new class SJ of coeffi-
cient sequences defined as follows:

Definition 1.6. A null sequence {ak} of positive numbers belongs to class SJ if
there exists a sequence {Ak} such that

Ak ↓ 0, as k →∞, (1.7)

∞∑

k=1

Ak < ∞, (1.8)

∣∣∣4
(ak

k

)∣∣∣ ≤ Ak

k
∀ k. (1.9)

Clearly class SJ ⊂ class S, Since
∣∣∣4

(ak

k

)∣∣∣ ≤ Ak

k
⇒ |∆ak| ≤ Ak, ∀ k.

Following example shows that the class SJ is proper subclass of class S.

Example 1.7. For k = I − {0, 1, 2}, where I is set of integers, define {ak} = 1
k3 ,

then there exists {Ak} = 1
k2 such that {ak} satisfies all the conditions of class

S but not class SJ. However, for k = 1, 2, 3... the sequence {bk} = 1
k3 satisfies

conditions of class SJ as well as conditions of class S. Clearly, class SJ is proper
subclass of class S.

Now, we define a new class SJr of coefficient sequences which is an extension of
class SJ.

Definition 1.8. A null sequence {ak} of positive numbers belongs to class SJr if
there exists a sequence {Ak} such that

Ak ↓ 0, as k →∞, (1.10)

∞∑

k=1

krAk < ∞, (r = 0, 1, 2, ...) (1.11)

∣∣∣4
(ak

k

)∣∣∣ ≤ Ak

k
∀ k. (1.12)

clearly, for r = 0, SJr = SJ. It is obvious that SJr+1 ⊂ SJr, but converse is not
true.

Example 1.9. For k = 1, 2, 3..., define bk = 1
kr+2 , r = 0, 1, 2, 3, ... Firstly, we

shall show that {bk} does not belong to SJr+1.

Really, bn =
1

nr+2
→ 0 as n →∞.
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Let there exists {Ak} = 1
kr+2 , r = 0, 1, 2, 3, ... s.t.

∞∑

k=1

kr+1Ak = kr+1 1

kr+2
=

∞∑

k=1

1

k
is divergent, i.e. {bk} does not belong to SJr+1.

But, Ak ↓ 0, as k →∞, and
∞∑

k=1

krAk = kr 1

kr+2
=

∞∑

k=1

1

k2
< ∞,

Also
∣∣4 (

bk

k

)∣∣ ≤ Ak

k
, ∀ k.

Therefore, {bk} belongs to SJr.

In what follows, tn(x) will represents fn(x) or gn(x).

2. Lemmas

We require the following lemmas in the proof of our result.

Lemma 2.1. [3] Let n ≥ 1 and let r be a nonnegative integer, x ∈ [ε, π]. Then
|D̃r

n(x)| ≤ Cε
nr

x
where Cε is a positive constant depending on ε, 0 < ε < π and

D̃n(x) is the conjugate Dirichlet kernel.

Lemma 2.2. [5] Let {ak} be a sequence of real numbers such that |ak| ≤ 1 for
all k. Then there exists a constant M > 0 such that for any n ≥ 1

∫ π

0

∣∣∣∣∣
n∑

k=0

akD̃k(x)

∣∣∣∣∣ dx ≤ M(n + 1).

Moreover by Bernstein’s inequality, for r = 0, 1, 2, 3.....
∫ π

0

∣∣∣∣∣
n∑

k=0

akD̃
r
k(x)

∣∣∣∣∣ dx ≤ M(n + 1)r+1.

Lemma 2.3. [3] ||D̃r
n(x)||L1 = O(nr log n), r = 0, 1, 2, 3...., where D̃r

n(x) repre-
sents the rth derivative of conjugate Dirichlet-Kernel.

3. Main Results

In this paper we shall prove the following main results:

Theorem 3.1. Let the coefficients of the series (1.3) belongs to class SJ, then
the series (1.3) is a Fourier series.

Proof. Making Use of Abel’s transformation on
n∑

k=1

(ak

k

)
, we get

n∑

k=1

(ak

k

)
=

n−1∑

k=1

k4
(ak

k

)
− an

≤
n−1∑

k=1

k

(
Ak

k

)
− an
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But (1.3) belongs to class SJ, therefore, the series
∞∑

k=1

(ak

k

)
converges.

Hence the conclusion of theorem follows from Theorem (1.5. ¤
Theorem 3.2. Let the coefficients of the series (1.3) belongs to class SJ, then

lim
n→∞

tn(x) = t(x) exists for x ∈ (0, π). (3.1)

t ∈ L1(0, π) (3.2)

||t(x)− Sn(x)|| = o(1), n →∞ (3.3)

Proof. We will consider only cosine sums as the proof for the sine sums follows
the same line.
To prove (3.1), we notice that

tn(x) =
a0

2
+

n∑

k=1

n∑

j=k

4(aj cos jx)

tn(x) =
a0

2
+

n∑

k=1

[ak cos kx− ak+1 cos(k + 1)x + ak+1 cos(k + 1)x

−ak+2 cos(k + 1)x + ..... + an cos nx− an+1 cos(n + 1)x]

=
a0

2
+

n∑

k=1

ak cos kx−
n∑

k=1

an+1 cos(n + 1)x

tn(x) = Sn(x)− nan+1 cos(n + 1)x (3.4)

Since Ak ↓ 0, as k → ∞ and
∞∑

k=1

Ak < ∞, therefore, by Oliver’s theorem we

have, kAk → 0, as k →∞ and so

nan = n2

∞∑

k=n

4
(ak

k

)
≤

∞∑

k=n

k2

(
Ak

k

)
= o(1) (3.5)

Also cos(n + 1)x is finite in (0, π). Hence

lim
n→∞

tn(x) = lim
n→∞

Sn(x) = t(x)

Moreover,

t(x) = lim
n→∞

tn(x) = lim
n→∞

Sn(x) = lim
n→∞

(
a0

2
+

n∑

k=1

ak cos kx

)

=
a0

2
+ lim

n→∞

(
n∑

k=1

ak cos kx

)

Use of Abel’s transformation yields

lim
n→∞

(
n∑

k=1

ak cos kx

)
= lim

n→∞

[
n−1∑

k=1

4
(ak

k

)
D̃′

k(x) +
an

n
D̃′

n(x)

]
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where D̃′
n(x) is the derivative of conjugate Dirichlet kernel.

=
∞∑

k=1

4
(ak

k

)
D̃′

k(x)

≤
∞∑

k=1

(
Ak

k

)
D̃′

k(x)

By the given hypothesis and lemma 2.1, the series
∞∑

k=1

(
Ak

k

)
D̃′

k(x) converges.

Therefore, the limit t(x) exists for x ∈ (0, π) and thus (3.1) follows.
For x 6= 0, it follows from (3.4) that

t(x)− tn(x) =
∞∑

k=n+1

ak cos kx + nan+1 cos(n + 1)x

= lim
m→∞

[
m∑

k=n+1

(ak

k

)
k cos kx

]
+ nan+1 cos(n + 1)x

Applying Abel’s transformation, we have

=
∞∑

k=n+1

4
(ak

k

)
D̃′

k(x)− an+1

n + 1
D̃′

n(x) + nan+1 cos(n + 1)x

≤
∞∑

k=n+1

(
Ak

k

) 4 (
ak

k

)
(

Ak

k

) D̃′
k(x) +

an+1

n + 1
D̃′

n(x) + nan+1 cos(n + 1)x

≤
∞∑

k=n+1

4
(

Ak

k

) k∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃′
j(x)−

(
An+1

n + 1

) n∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃′
j(x)

+
an+1

n + 1
D̃′

n(x) + nan+1 cos(n + 1)x

Thus from lemma 2.2 and 2.3, we obtain

||t(x)− tn(x)|| ≤
∞∑

k=n+1

4
(

Ak

k

) ∫ π

0

∣∣∣∣∣∣

k∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃′
j(x)

∣∣∣∣∣∣
dx

+

(
An+1

n + 1

) ∫ π

0

∣∣∣∣∣∣

n∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃′
j(x)

∣∣∣∣∣∣
dx +

∫ π

0

∣∣∣∣
an+1

n + 1
D̃′

n(x)

∣∣∣∣ dx

+n|an+1|
∫ π

0

| cos(n + 1)x| dx
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= O

( ∞∑

k=n+1

k24
(

Ak

k

))
+ O

(
n2

(
An+1

n + 1

))

+O(an+1 log n) + n|an+1|
∫ π

0

| cos(n + 1)x| dx

But
n∑

k=1

Ak =
n−1∑

k=1

k(k + 1)

2
4

(
Ak

k

)
+

n(n + 1)

2

An

n

since {ak} ∈SJ, we have

k(k + 1)
Ak

k
= (k + 1)Ak = o(1) as k →∞.

and therefore the series
∞∑

k=n+1

k24
(

Ak

k

)
, converges.

Moreover,

∫ π

0

|cos(n + 1)x| dx =

∫ π
2

0

cos(n + 1)x dx−
∫ π

π
2

cos(n + 1)x dx ≤ 2

n + 1

and since an’s are positive, we have by (3.5) that an log n ≤ nan = o(1), for n ≥
1.
Hence, it follows that

||t(x)− tn(x)|| = o(1) as n →∞. (3.6)

and since tn(x) is a polynomial, therefore t(x) ∈ L1. This proves (3.2).
We now turn to the proof of (3.3), We have

||t− Sn|| = ||t− tn + tn − Sn||
≤ ||t− tn||+ ||tn − Sn||
= ||t− tn||+ ||nan+1 cos(n + 1)x||
≤ ||t− tn||+ n|an+1|

∫ π

0

| cos(n + 1)x| dx

Further, ||t(x)− tn(x)|| = o(1), n →∞ (by (3.6)),

∫ π

0

| cos(n + 1)x| dx ≤ 2

n + 1
and {ak} is a null sequence,therefore the conclusion of theorem follows. ¤

Theorem 3.3. Let the coefficients of the series (1.3) belongs to class SJr, then

lim
n→∞

trn(x) = tr(x) exists for x ∈ (0, π). (3.7)

tr ∈ L1(0, π), (r = 0, 1, 2, ...) (3.8)

||tr(x)− Sr
n(x)|| = o(1), n →∞. (3.9)
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Proof. We will consider only cosine sums as the proof for the sine sums follows
the same line. As in the proof of the Theorem 3.2, we have

tn(x) =
a0

2
+

n∑

k=1

n∑

j=k

4(aj cos jx)

= Sn(x)− nan+1 cos(n + 1)x

we have, then

trn(x) = Sr
n(x)− n(n + 1)ran+1 cos

(
(n + 1)x +

rπ

2

)

Since Ak ↓ 0, as k → ∞ and
∞∑

k=1

krAk < ∞, therefore, we have, kr+1Ak →
0, as k →∞ and so

nr+1an = nr+2

∞∑

k=n

4
(ak

k

)
≤

∞∑

k=n

kr+2

(
Ak

k

)
= o(1) (3.10)

Also cos
(
(n + 1)x + rπ

2

)
is finite in (0, π). Hence

tr(x) = lim
n→∞

trn(x)

= lim
n→∞

Sr
n(x)

= lim
n→∞

(
n∑

k=1

krak cos
(
kx +

rπ

2

))

use of Abel’s transformation yields

lim
n→∞

(
n∑

k=1

krak cos
(
kx +

rπ

2

))
= lim

n→∞

[
n−1∑

k=1

4
(ak

k

)
D̃r+1

k (x) +
an

n
D̃r+1

n (x)

]
,

where D̃r+1
n (x) represents the (r + 1)th derivative of conjugate Dirichlet kernel.

=
∞∑

k=1

4
(ak

k

)
D̃r+1

k (x) + lim
n→∞

[an

n
D̃r+1

n (x)
]

≤
∞∑

k=1

(
Ak

k

)
D̃r+1

k (x) + lim
n→∞

[an

n
D̃r+1

n (x)
]

By making use of the given hypothesis, lemma 2.1 and (3.10), the series
∞∑

k=1

(
Ak

k

)
D̃r+1

k (x)

converges. Therefore, the limit tr(x) exists for x ∈ (0, π) and thus (3.7) follows.
To prove (3.8), we have

tr(x)− trn(x) =
∞∑

k=n+1

krak cos
(
kx +

rπ

2

)
+ n(n + 1)ran+1 cos

(
(n + 1)x +

rπ

2

)
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Making use of Abel’s transformation, we obtain

=
∞∑

k=n+1

4
(ak

k

)
D̃r+1

k (x)− an+1

n + 1
D̃r+1

n (x) + n(n + 1)ran+1 cos
(
(n + 1)x +

rπ

2

)

≤
∞∑

k=n+1

(
Ak

k

) 4 (
ak

k

)
(

Ak

k

) D̃r+1
k (x)− an+1

n + 1
D̃r+1

n (x) + n(n + 1)ran+1 cos
(
(n + 1)x +

rπ

2

)

≤
∞∑

k=n+1

4
(

Ak

k

) k∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃r+1
j (x)−

(
An+1

n + 1

) n∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃r+1
j (x)

+
an+1

n + 1
D̃r+1

n (x) + nan+1 cos
(
(n + 1)x +

rπ

2

)

Thus from lemma 2.2 and 2.3, we obtain

||tr(x)− trn(x)|| ≤
∞∑

k=n+1

4
(

Ak

k

) ∫ π

0

∣∣∣∣∣∣

k∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃r+1
j (x)

∣∣∣∣∣∣
dx

+

(
An+1

n + 1

) ∫ π

0

∣∣∣∣∣∣

n∑
j=1

4
(

aj

j

)
(

Aj

j

) D̃r+1
j (x)

∣∣∣∣∣∣
dx +

∫ π

0

∣∣∣∣
an+1

n + 1
D̃r+1

n (x)

∣∣∣∣ dx

+n(n + 1)r|an+1|
∫ π

0

| cos
(
(n + 1)x +

rπ

2

)
| dx

= O

( ∞∑

k=n+1

kr+24
(

Ak

k

))
+ O

(
nr+2

(
An+1

n + 1

))
+ O(nran+1 log n)

+n(n + 1)r|an+1|
∫ π

0

| cos
(
(n + 1)x +

rπ

2

)
| dx

Using the argument as in the proof of theorem 3.2, it is easily shown that the

series
∞∑

k=n+1

kr+24
(

Ak

k

)
, converges. Moreover,

∫ π

0

| cos
(
(n + 1)x +

rπ

2

)
| dx ≤ 2

n + 1

and for n ≥ 1, nran log n ≤ nr+1an = o(1) by (3.10). Hence it follows that

||tr(x)− trn(x)|| = o(1) as n →∞. (3.11)

and since trn(x) is a polynomial, therefore tr(x) ∈ L1. This proves (3.8).
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We now turn to the proof of (3.9). We have

||tr − Sr
n|| = ||tr − trn + trn − Sr

n||
≤ ||tr − trn||+ ||trn − Sr

n||
= ||tr − tn

r||+ ||n(n + 1)ran+1 cos
(
(n + 1)x +

rπ

2

)
||

≤ ||tr − trn||+ n(n + 1)r|an+1|
∫ π

0

| cos
(
(n + 1)x +

rπ

2

)
|dx

Further, ||tr(x)−trn(x)|| = o(1), n →∞ (by (3.11)) ,

∫ π

0

| cos
(
(n + 1)x +

rπ

2

)
| dx ≤

2

n + 1
and {ak} is a null sequence, the conclusion of theorem follows. ¤

Remark 3.4. The case r = 0, in Theorem 3.3 yields the Theorem 3.2.
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