The Journal of Nonlinear Sciences and Applications http://www.tjnsa.com

CONVERGENCE OF NEW MODIFIED TRIGONOMETRIC SUMS IN THE METRIC SPACE L

JATINDERDEEP KAUR 1 AND S.S. BHATIA 2*

ABSTRACT. We introduce here new modified cosine and sine sums as

$$\frac{a_0}{2} + \sum_{k=1}^n \sum_{j=k}^n \triangle(a_j \cos jx)$$

and

$$\sum_{k=1}^{n} \sum_{j=k}^{n} \triangle(a_j \sin jx)$$

and study their integrability and L^1 -convergence. The L^1 -convergence of cosine and sine series have been obtained as corollary. In this paper, we have been able to remove the necessary and sufficient condition $a_k \log k = o(1)$ as $k \to \infty$ for the L^1 -convergence of cosine and sine series.

1. INTRODUCTION

Consider cosine and sine series

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx \tag{1.1}$$

and

$$\sum_{k=1}^{\infty} a_k \sin kx \tag{1.2}$$

Date: Received:March 2008 ; Revised: Dec 2008

^{*} Corresponding author.

²⁰⁰⁰ Mathematics Subject Classification. Primary 42A20; Secondary 42A32.

Key words and phrases. L^1 -convergence, Dirichlet kernel, Fejer kernel, monotone sequence.

^{**}This work is the part of UGC sponsored Major Research Project entitled

[&]quot;Integrability and L^1 -convergence of trigonometric Series".

or together

$$\sum_{k=1}^{\infty} a_k \phi_k(x) \tag{1.3}$$

Where $\phi_k(x)$ is $\cos kx$ or $\sin kx$ respectively. Let the partial sum of (1.3) be denoted by $S_n(x)$ and $t(x) = \lim_{n \to \infty} S_n(x)$. Further, let $t^r(x) = \lim_{n \to \infty} S_n^r(x)$ where $S_n^r(x)$ represents r^{th} derivative of $S_n(x)$.

Definition 1.1. A sequence $\{a_k\}$ is said to convex if $\triangle^2 a_k \ge 0$, where $\triangle^2 a_k = \triangle(\triangle a_k)$ and $\triangle a_k = a_k - a_{k+1}$, and quasi-convex sequence if $\sum (k+1) \triangle^2 a_k < \infty$.

The concept of quasi-convex was generalized by Sidon [4] in the following manner:

Definition 1.2. [4] A null sequence $\{a_k\}$ is said to belong to class S if there exists a sequence $\{A_k\}$ such that

$$A_k \downarrow 0, \ k \to \infty, \tag{1.4}$$

$$\sum_{k=0}^{\infty} A_k < \infty, \tag{1.5}$$

and

$$|\Delta a_k| \le A_k, \ \forall \ k. \tag{1.6}$$

A quasi-convex null sequence satisfies conditions of the class S because we can choose

$$A_n = \sum_{m=n}^{\infty} \left| \triangle^2 a_m \right|$$

Concerning L^1 -convergence of (1.1) and (1.2), the following theorems are known:

Theorem 1.3. ([1], p. 204) If $a_k \downarrow 0$ and $\{a_k\}$ is convex or even quasi-convex, then for the convergence of the series (1.1) in the metric space L^1 , it is necessary and sufficient that $a_k \log k = o(1)$, $k \to \infty$.

This theorem is due to Kolmogorov [2]. Teljakovskii [5] generalized Theorem 1.3 for the cosine series (1.1) with coefficients $\{a_k\}$ satisfying the conditions of the class S in the following form:

Theorem 1.4. If the coefficient sequence $\{a_k\}$ of the cosine series (1.1) belongs to the class S, then a necessary and sufficient condition for L^1 -convergence of (1.1) is $a_k \log k = o(1), \ k \to \infty$.

Theorem 1.5. ([1], p. 201) If $a_k \downarrow 0$ and $\sum_{k=1}^{\infty} \left(\frac{a_k}{k}\right) < \infty$, then (1.3) is a Fourier series.

In the present paper, we introduce new modified cosine and sine sums as

$$f_n(x) = \frac{a_0}{2} + \sum_{k=1}^n \sum_{j=k}^n \triangle(a_j \cos jx)$$

180

and

$$g_n(x) = \sum_{k=1}^n \sum_{j=k}^n \triangle(a_j \sin jx)$$

and study their integrability and L^1 -convergence under a new class SJ of coefficient sequences defined as follows:

Definition 1.6. A null sequence $\{a_k\}$ of positive numbers belongs to class SJ if there exists a sequence $\{A_k\}$ such that

$$A_k \downarrow 0, \ as \ k \to \infty, \tag{1.7}$$

$$\sum_{k=1}^{\infty} A_k < \infty, \tag{1.8}$$

$$\left| \bigtriangleup \left(\frac{a_k}{k} \right) \right| \le \frac{A_k}{k} \ \forall \ k. \tag{1.9}$$

Clearly class $SJ \subset class S$, Since

$$\left| \bigtriangleup \left(\frac{a_k}{k} \right) \right| \le \frac{A_k}{k} \Rightarrow |\Delta a_k| \le A_k, \ \forall \ k.$$

Following example shows that the class SJ is proper subclass of class S.

Example 1.7. For $k = I - \{0, 1, 2\}$, where *I* is set of integers, define $\{a_k\} = \frac{1}{k^3}$, then there exists $\{A_k\} = \frac{1}{k^2}$ such that $\{a_k\}$ satisfies all the conditions of class S but not class SJ. However, for k = 1, 2, 3... the sequence $\{b_k\} = \frac{1}{k^3}$ satisfies conditions of class SJ as well as conditions of class S. Clearly, class SJ is proper subclass of class S.

Now, we define a new class SJ_r of coefficient sequences which is an extension of class SJ.

Definition 1.8. A null sequence $\{a_k\}$ of positive numbers belongs to class SJ_r if there exists a sequence $\{A_k\}$ such that

$$A_k \downarrow 0, \ as \ k \to \infty, \tag{1.10}$$

$$\sum_{k=1}^{\infty} k^r A_k < \infty, \qquad (r = 0, 1, 2, ...)$$
(1.11)

$$\left| \bigtriangleup \left(\frac{a_k}{k} \right) \right| \le \frac{A_k}{k} \,\forall \,k. \tag{1.12}$$

clearly, for r = 0, $SJ_r = SJ$. It is obvious that $SJ_{r+1} \subset SJ_r$, but converse is not true.

Example 1.9. For k = 1, 2, 3..., define $b_k = \frac{1}{k^{r+2}}$, r = 0, 1, 2, 3, ... Firstly, we shall show that $\{b_k\}$ does not belong to SJ_{r+1} .

Really,
$$b_n = \frac{1}{n^{r+2}} \to 0 \quad as \quad n \to \infty.$$

Let there exists $\{A_k\} = \frac{1}{k^{r+2}}, \quad r = 0, 1, 2, 3, \dots$ s.t. $\sum_{k=1}^{\infty} k^{r+1} A_k = k^{r+1} \frac{1}{k^{r+2}} = \sum_{k=1}^{\infty} k^{k+1} A_k = k^{k+1} \frac{1}{k^{k+2}} = \sum_{k=1}^{\infty} k^{k+1} A_k = k^{k+1} A_k =$

 $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent, i.e. $\{b_k\}$ does not belong to SJ_{r+1} .

But, $A_k \downarrow 0$, as $k \to \infty$, and $\sum_{k=1}^{\infty} k^r A_k = k^r \frac{1}{k^{r+2}} = \sum_{k=1}^{\infty} \frac{1}{k^2} < \infty$, Also $\left| \bigtriangleup \left(\frac{b_k}{k} \right) \right| \le \frac{A_k}{k}, \quad \forall \ k$. Therefore, $\{b_k\}$ belongs to SJ_r .

In what follows, $t_n(x)$ will represents $f_n(x)$ or $g_n(x)$.

2. Lemmas

We require the following lemmas in the proof of our result.

Lemma 2.1. [3] Let $n \ge 1$ and let r be a nonnegative integer, $x \in [\epsilon, \pi]$. Then $|\tilde{D}_n^r(x)| \le C_{\epsilon} \frac{n^r}{x}$ where C_{ϵ} is a positive constant depending on ϵ , $0 < \epsilon < \pi$ and $\tilde{D}_n(x)$ is the conjugate Dirichlet kernel.

Lemma 2.2. [5] Let $\{a_k\}$ be a sequence of real numbers such that $|a_k| \leq 1$ for all k. Then there exists a constant M > 0 such that for any $n \geq 1$

$$\int_0^{\pi} \left| \sum_{k=0}^n a_k \tilde{D}_k(x) \right| \, dx \le M(n+1).$$

Moreover by Bernstein's inequality, for r = 0, 1, 2, 3...

$$\int_0^{\pi} \left| \sum_{k=0}^n a_k \tilde{D}_k^r(x) \right| \, dx \le M(n+1)^{r+1}.$$

Lemma 2.3. [3] $||\tilde{D}_n^r(x)||_{L^1} = O(n^r \log n), r = 0, 1, 2, 3, ..., where <math>\tilde{D}_n^r(x)$ represents the r^{th} derivative of conjugate Dirichlet-Kernel.

3. Main Results

In this paper we shall prove the following main results:

Theorem 3.1. Let the coefficients of the series (1.3) belongs to class SJ, then the series (1.3) is a Fourier series.

Proof. Making Use of Abel's transformation on $\sum_{k=1}^{n} \left(\frac{a_k}{k}\right)$, we get

$$\sum_{k=1}^{n} \left(\frac{a_k}{k}\right) = \sum_{k=1}^{n-1} k \bigtriangleup \left(\frac{a_k}{k}\right) - a_n$$
$$\leq \sum_{k=1}^{n-1} k \left(\frac{A_k}{k}\right) - a_n$$

But (1.3) belongs to class SJ, therefore, the series $\sum_{k=1}^{\infty} \left(\frac{a_k}{k}\right)$ converges. Hence the conclusion of theorem follows from Theorem (1.5.

Theorem 3.2. Let the coefficients of the series (1.3) belongs to class SJ, then

$$\lim_{n \to \infty} t_n(x) = t(x) \text{ exists for } x \in (0, \pi).$$
(3.1)

$$t \in L^1(0,\pi) \tag{3.2}$$

$$||t(x) - S_n(x)|| = o(1), \ n \to \infty$$
 (3.3)

Proof. We will consider only cosine sums as the proof for the sine sums follows the same line.

To prove (3.1), we notice that

$$t_n(x) = \frac{a_0}{2} + \sum_{k=1}^n \sum_{j=k}^n \triangle(a_j \cos jx)$$

$$t_n(x) = \frac{a_0}{2} + \sum_{k=1}^n [a_k \cos kx - a_{k+1} \cos(k+1)x + a_{k+1} \cos(k+1)x - a_{k+2}\cos(k+1)x + \dots + a_n\cos nx - a_{n+1}\cos(n+1)x]$$

$$= \frac{a_0}{2} + \sum_{k=1}^n a_k\cos kx - \sum_{k=1}^n a_{n+1}\cos(n+1)x$$

$$t_n(x) = S_n(x) - na_{n+1}\cos(n+1)x$$
(3.4)

Since $A_k \downarrow 0$, as $k \to \infty$ and $\sum_{k=1}^{\infty} A_k < \infty$, therefore, by Oliver's theorem we have, $kA_k \to 0$, as $k \to \infty$ and so

$$na_n = n^2 \sum_{k=n}^{\infty} \bigtriangleup \left(\frac{a_k}{k}\right) \le \sum_{k=n}^{\infty} k^2 \left(\frac{A_k}{k}\right) = o(1) \tag{3.5}$$

Also $\cos(n+1)x$ is finite in $(0,\pi)$. Hence

$$\lim_{n \to \infty} t_n(x) = \lim_{n \to \infty} S_n(x) = t(x)$$

Moreover,

$$t(x) = \lim_{n \to \infty} t_n(x) = \lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \left(\frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx \right)$$
$$= \frac{a_0}{2} + \lim_{n \to \infty} \left(\sum_{k=1}^n a_k \cos kx \right)$$

Use of Abel's transformation yields

$$\lim_{n \to \infty} \left(\sum_{k=1}^n a_k \cos kx \right) = \lim_{n \to \infty} \left[\sum_{k=1}^{n-1} \bigtriangleup \left(\frac{a_k}{k} \right) \tilde{D}'_k(x) + \frac{a_n}{n} \tilde{D}'_n(x) \right]$$

where $\tilde{D}'_n(x)$ is the derivative of conjugate Dirichlet kernel.

$$= \sum_{k=1}^{\infty} \bigtriangleup \left(\frac{a_k}{k}\right) \tilde{D}'_k(x)$$
$$\leq \sum_{k=1}^{\infty} \left(\frac{A_k}{k}\right) \tilde{D}'_k(x)$$

By the given hypothesis and lemma 2.1, the series $\sum_{k=1}^{\infty} \left(\frac{A_k}{k}\right) \tilde{D}'_k(x)$ converges. Therefore, the limit t(x) exists for $x \in (0, \pi)$ and thus (3.1) follows.

For $x \neq 0$, it follows from (3.4) that

$$t(x) - t_n(x) = \sum_{k=n+1}^{\infty} a_k \cos kx + na_{n+1} \cos(n+1)x$$
$$= \lim_{m \to \infty} \left[\sum_{k=n+1}^m \left(\frac{a_k}{k}\right) k \cos kx \right] + na_{n+1} \cos(n+1)x$$

Applying Abel's transformation, we have

$$= \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{a_k}{k}\right) \tilde{D}'_k(x) - \frac{a_{n+1}}{n+1} \tilde{D}'_n(x) + na_{n+1} \cos(n+1)x$$

$$\leq \sum_{k=n+1}^{\infty} \left(\frac{A_k}{k}\right) \frac{\bigtriangleup \left(\frac{a_k}{k}\right)}{\left(\frac{A_k}{k}\right)} \tilde{D}'_k(x) + \frac{a_{n+1}}{n+1} \tilde{D}'_n(x) + na_{n+1} \cos(n+1)x$$

$$\leq \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{A_k}{k}\right) \sum_{j=1}^k \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}'_j(x) - \left(\frac{A_{n+1}}{n+1}\right) \sum_{j=1}^n \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}'_j(x) + \frac{a_{n+1}}{n+1} \tilde{D}'_n(x) + na_{n+1} \cos(n+1)x$$

Thus from lemma 2.2 and 2.3, we obtain

$$\begin{aligned} ||t(x) - t_n(x)|| &\leq \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{A_k}{k}\right) \int_0^{\pi} \left|\sum_{j=1}^k \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}'_j(x)\right| \, dx \\ &+ \left(\frac{A_{n+1}}{n+1}\right) \int_0^{\pi} \left|\sum_{j=1}^n \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}'_j(x)\right| \, dx + \int_0^{\pi} \left|\frac{a_{n+1}}{n+1} \tilde{D}'_n(x)\right| \, dx \\ &+ n|a_{n+1}| \int_0^{\pi} |\cos(n+1)x| \, dx \end{aligned}$$

$$= O\left(\sum_{k=n+1}^{\infty} k^2 \bigtriangleup \left(\frac{A_k}{k}\right)\right) + O\left(n^2 \left(\frac{A_{n+1}}{n+1}\right)\right)$$
$$+ O(a_{n+1}\log n) + n|a_{n+1}| \int_0^{\pi} |\cos(n+1)x| dx$$

But

$$\sum_{k=1}^{n} A_k = \sum_{k=1}^{n-1} \frac{k(k+1)}{2} \bigtriangleup \left(\frac{A_k}{k}\right) + \frac{n(n+1)}{2} \frac{A_n}{n}$$

since $\{a_k\} \in SJ$, we have

$$k(k+1)\frac{A_k}{k} = (k+1)A_k = o(1) \ as \ k \to \infty.$$

and therefore the series $\sum_{k=n+1}^{\infty} k^2 \triangle \left(\frac{A_k}{k}\right)$, converges.

Moreover,

$$\int_0^\pi |\cos(n+1)x| \, dx = \int_0^{\frac{\pi}{2}} \cos(n+1)x \, dx - \int_{\frac{\pi}{2}}^\pi \cos(n+1)x \, dx \le \frac{2}{n+1}$$

and since a_n 's are positive, we have by (3.5) that $a_n \log n \le na_n = o(1)$, for $n \ge 1$.

Hence, it follows that

$$||t(x) - t_n(x)|| = o(1) \text{ as } n \to \infty.$$
 (3.6)

and since $t_n(x)$ is a polynomial, therefore $t(x) \in L^1$. This proves (3.2). We now turn to the proof of (3.3), We have

$$\begin{aligned} ||t - S_n|| &= ||t - t_n + t_n - S_n|| \\ &\leq ||t - t_n|| + ||t_n - S_n|| \\ &= ||t - t_n|| + ||na_{n+1}\cos(n+1)x|| \\ &\leq ||t - t_n|| + n|a_{n+1}| \int_0^\pi |\cos(n+1)x| \ dx \end{aligned}$$

Further, $||t(x) - t_n(x)|| = o(1), n \to \infty$ (by (3.6)), $\int_0^{\pi} |\cos(n+1)x| dx \le \frac{2}{n+1}$ and $\{a_k\}$ is a null sequence, therefore the conclusion of theorem follows.

Theorem 3.3. Let the coefficients of the series (1.3) belongs to class SJ_r , then

$$\lim_{n \to \infty} t_n^r(x) = t^r(x) \text{ exists for } x \in (0,\pi).$$
(3.7)

$$t^r \in L^1(0,\pi),$$
 $(r=0,1,2,...)$ (3.8)

$$||t^{r}(x) - S_{n}^{r}(x)|| = o(1), \ n \to \infty.$$
(3.9)

185

Proof. We will consider only cosine sums as the proof for the sine sums follows the same line. As in the proof of the Theorem 3.2, we have

$$t_n(x) = \frac{a_0}{2} + \sum_{k=1}^n \sum_{j=k}^n \triangle(a_j \cos jx) \\ = S_n(x) - na_{n+1} \cos(n+1)x$$

we have, then

$$t_n^r(x) = S_n^r(x) - n(n+1)^r a_{n+1} \cos\left((n+1)x + \frac{r\pi}{2}\right)$$

Since $A_k \downarrow 0$, as $k \to \infty$ and $\sum_{k=1}^{\infty} k^r A_k < \infty$, therefore, we have, $k^{r+1} A_k \to 0$, as $k \to \infty$ and so

$$n^{r+1}a_n = n^{r+2}\sum_{k=n}^{\infty} \bigtriangleup\left(\frac{a_k}{k}\right) \le \sum_{k=n}^{\infty} k^{r+2}\left(\frac{A_k}{k}\right) = o(1) \tag{3.10}$$

Also $\cos\left((n+1)x + \frac{r\pi}{2}\right)$ is finite in $(0,\pi)$. Hence

$$t^{r}(x) = \lim_{n \to \infty} t_{n}^{r}(x)$$

=
$$\lim_{n \to \infty} S_{n}^{r}(x)$$

=
$$\lim_{n \to \infty} \left(\sum_{k=1}^{n} k^{r} a_{k} \cos\left(kx + \frac{r\pi}{2}\right) \right)$$

use of Abel's transformation yields

$$\lim_{n \to \infty} \left(\sum_{k=1}^n k^r a_k \cos\left(kx + \frac{r\pi}{2}\right) \right) = \lim_{n \to \infty} \left[\sum_{k=1}^{n-1} \bigtriangleup\left(\frac{a_k}{k}\right) \tilde{D}_k^{r+1}(x) + \frac{a_n}{n} \tilde{D}_n^{r+1}(x) \right],$$

where $\tilde{D}_n^{r+1}(x)$ represents the $(r+1)^{th}$ derivative of conjugate Dirichlet kernel.

$$= \sum_{k=1}^{\infty} \bigtriangleup \left(\frac{a_k}{k}\right) \tilde{D}_k^{r+1}(x) + \lim_{n \to \infty} \left[\frac{a_n}{n} \tilde{D}_n^{r+1}(x)\right]$$
$$\leq \sum_{k=1}^{\infty} \left(\frac{A_k}{k}\right) \tilde{D}_k^{r+1}(x) + \lim_{n \to \infty} \left[\frac{a_n}{n} \tilde{D}_n^{r+1}(x)\right]$$

By making use of the given hypothesis, lemma 2.1 and (3.10), the series $\sum_{k=1}^{\infty} \left(\frac{A_k}{k}\right) \tilde{D}_k^{r+1}(x)$ converges. Therefore, the limit $t^r(x)$ exists for $x \in (0, \pi)$ and thus (3.7) follows. To prove (3.8), we have

$$t^{r}(x) - t_{n}^{r}(x) = \sum_{k=n+1}^{\infty} k^{r} a_{k} \cos\left(kx + \frac{r\pi}{2}\right) + n(n+1)^{r} a_{n+1} \cos\left((n+1)x + \frac{r\pi}{2}\right)$$

Making use of Abel's transformation, we obtain

$$= \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{a_k}{k}\right) \tilde{D}_k^{r+1}(x) - \frac{a_{n+1}}{n+1} \tilde{D}_n^{r+1}(x) + n(n+1)^r a_{n+1} \cos\left((n+1)x + \frac{r\pi}{2}\right)$$

$$\leq \sum_{k=n+1}^{\infty} \left(\frac{A_k}{k}\right) \frac{\bigtriangleup \left(\frac{a_k}{k}\right)}{\left(\frac{A_k}{k}\right)} \tilde{D}_k^{r+1}(x) - \frac{a_{n+1}}{n+1} \tilde{D}_n^{r+1}(x) + n(n+1)^r a_{n+1} \cos\left((n+1)x + \frac{r\pi}{2}\right)$$

$$\leq \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{A_k}{k}\right) \sum_{j=1}^k \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}_j^{r+1}(x) - \left(\frac{A_{n+1}}{n+1}\right) \sum_{j=1}^n \frac{\bigtriangleup \left(\frac{a_j}{j}\right)}{\left(\frac{A_j}{j}\right)} \tilde{D}_j^{r+1}(x) + \frac{a_{n+1}}{n+1} \tilde{D}_n^{r+1}(x) + na_{n+1} \cos\left((n+1)x + \frac{r\pi}{2}\right)$$

Thus from lemma 2.2 and 2.3, we obtain

$$\begin{aligned} ||t^{r}(x) - t_{n}^{r}(x)|| &\leq \sum_{k=n+1}^{\infty} \bigtriangleup \left(\frac{A_{k}}{k}\right) \int_{0}^{\pi} \left|\sum_{j=1}^{k} \frac{\bigtriangleup \left(\frac{a_{j}}{j}\right)}{\left(\frac{A_{j}}{j}\right)} \tilde{D}_{j}^{r+1}(x)\right| \, dx \\ &+ \left(\frac{A_{n+1}}{n+1}\right) \int_{0}^{\pi} \left|\sum_{j=1}^{n} \frac{\bigtriangleup \left(\frac{a_{j}}{j}\right)}{\left(\frac{A_{j}}{j}\right)} \tilde{D}_{j}^{r+1}(x)\right| \, dx + \int_{0}^{\pi} \left|\frac{a_{n+1}}{n+1} \tilde{D}_{n}^{r+1}(x)\right| \, dx \\ &+ n(n+1)^{r} |a_{n+1}| \int_{0}^{\pi} |\cos\left((n+1)x + \frac{r\pi}{2}\right)| \, dx \\ &= O\left(\sum_{k=n+1}^{\infty} k^{r+2} \bigtriangleup \left(\frac{A_{k}}{k}\right)\right) + O\left(n^{r+2} \left(\frac{A_{n+1}}{n+1}\right)\right) + O(n^{r} a_{n+1} \log n) \\ &+ n(n+1)^{r} |a_{n+1}| \int_{0}^{\pi} |\cos\left((n+1)x + \frac{r\pi}{2}\right)| \, dx \end{aligned}$$

Using the argument as in the proof of theorem 3.2, it is easily shown that the series $\sum_{k=n+1}^{\infty} k^{r+2} \Delta\left(\frac{A_k}{k}\right)$, converges. Moreover,

$$\int_0^{\pi} |\cos\left((n+1)x + \frac{r\pi}{2}\right)| \, dx \le \frac{2}{n+1}$$

and for $n \ge 1$, $n^r a_n \log n \le n^{r+1} a_n = o(1)$ by (3.10). Hence it follows that

$$||t^{r}(x) - t^{r}_{n}(x)|| = o(1) \text{ as } n \to \infty.$$
 (3.11)

and since $t_n^r(x)$ is a polynomial, therefore $t^r(x) \in L^1$. This proves (3.8).

We now turn to the proof of (3.9). We have

$$\begin{aligned} ||t^{r} - S_{n}^{r}|| &= ||t^{r} - t_{n}^{r} + t_{n}^{r} - S_{n}^{r}|| \\ &\leq ||t^{r} - t_{n}^{r}|| + ||t_{n}^{r} - S_{n}^{r}|| \\ &= ||t^{r} - t_{n}^{r}|| + ||n(n+1)^{r}a_{n+1}\cos\left((n+1)x + \frac{r\pi}{2}\right)|| \\ &\leq ||t^{r} - t_{n}^{r}|| + n(n+1)^{r}|a_{n+1}| \int_{0}^{\pi} |\cos\left((n+1)x + \frac{r\pi}{2}\right)| dx \end{aligned}$$

Further, $||t^r(x) - t_n^r(x)|| = o(1), n \to \infty$ (by (3.11)), $\int_0 |\cos((n+1)x + \frac{r^n}{2})| dx \le \frac{2}{n+1}$ and $\{a_k\}$ is a null sequence, the conclusion of theorem follows. \Box

Remark 3.4. The case r = 0, in Theorem 3.3 yields the Theorem 3.2.

Acknowledgements: Authors are thankful to Professor Babu Ram (Retd.) of M. D. University, Rohtak for his valuable suggestions during the preparation of this paper.

References

- N.K. Bary, A treatise on trigonometric series, Vol II, Pergamon Press, London, (1964). 1.3, 1.5
- [2] A.N. Kolmogorov, Sur l'ordere de grandeur des coefficients de la series de Fourier -Lebesque, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys., (1923), 83–86. 1
- [3] S. Sheng, The extension of the theorems of C.V. Stanojević and V.B. Stanojević, Proc. Amer. Math. Soc., 110, (1990), 895–904. 2.1, 2.3
- [4] S. Sidon, Hinreichende Bedingungen f
 ür den Fourier-Charakter einer trigonometrischen Reihe, J. London Math Soc., 14, (1939), 158–160. 1, 1.2
- [5] S.A. Teljakovskii, A sufficient condition of Sidon for the integrability of trigonometric series, Mat. Zametki, 14(3), (1973), 317–328. 1, 2.2

¹ School of Mathematics & Computer Applications, Thapar University Patiala(Pb.)-147004, INDIA.

E-mail address: jatinkaur4u@yahoo.co.in

² SCHOOL OF MATHEMATICS & COMPUTER APPLICATIONS, THAPAR UNIVERSITY PATIALA(PB.)-147004, INDIA. *E-mail address*: ssbhatia63@yahoo.com